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Chapter 1

Introduction

This report is a story of failing human intuitions and data science success. In brief, it demonstrates
that statistical learning brings insights otherwise unavailable, and eventually achieves and RMSE of
*0.

This project is the first of two final projects of the HarvardX - PH125.9x Data Science course.

Its purpose is the development of a recommender system for movie ratings using the Movie Lens
dataset.1 Recommender systems are a class of statistical learning systems that analyse individual
past choices and/or preferences to propose relevant information to make future choices. Typical
systems would be propose additional items to purchase knowing past shopping activity, searches
(e.g. Amazon), choice of books (e.g. GoodRead) or movies (Netflix).

Broadly, recommender systems fall into two categories:

• collaborative filtering (user-based) which attempts to pool similar users together and guide a
user’s recommendation given the pool’s preference.

• content-based filtering which attempts to pool similar contents (e.g. shopping carts, movie
ratings) together and guide a user’s recommendation within a simila pools of content.

In practice, those two approaches are mixed together. A general overview is available on Wikipedia2

and in the course materials.3

Being given a training and a validation dataset, we will attempt to minimise the Root Mean Sqared
Error (RMSE) of predicted ratings for pairs of user/movie below 0.8649.

We note that Netflix organised a competition spanning over several years to improve a recommender
system which shares many similarities with this project (Bennett, Lanning, and others 2007). Papers
published by teams who participated in that competition have guided some of this report. (Bennett,
Lanning, and others 2007) (Bell, Koren, and Volinsky 2007) (Bell, Koren, and Volinsky 2008) (Koren
2009) (Töscher, Jahrer, and Bell 2009) (Piotte and Chabbert 2009) (Gower 2014)

This report is organised as follows. In Section 2, we describe the dataset and add a number of
possibly relevant predictors. Section 3 provides a number of visualistions. Section 4 proposes three

1https://grouplens.org/datasets/movielens/10m/
2https://en.wikipedia.org/wiki/Recommender_system
3https://rafalab.github.io/dsbook/large-datasets.html#recommendation-systems
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models that will show to be poor performers. Section 5 is dedicated to a low-rank matrix factorisation
estimated with a stochastic gradient descent.
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Chapter 2

Data Summary and Processing

Unless specified, this section only uses a portion (20%) of the dataset for performance reasons.

2.1 Description of the dataset
The data provided is a list of ratings made by anonymised users of a number of movies. The entire
training dataset is a table of 9000055 rows and 6 variables. Note that the dataset is extermely sparse:
if each user had rated each movie, the dataset should contain 54000330 ratings, i.e. 85 times more.

Each row represents a single rating made by a given user regarding a given movie.

The complete dataset includes 10677 unique movies, rated by 69878 unique users. No user rated
the same movie twice.1 Importantly, the dataset is fully and properly populated: no missing or
abnormal value was found. However, a few movies were rated before the movie came out: the date
of such ratings falls in the year before the one in brackets in the title. In such case, the date of first
screening is brought to the date of the first rating.

The reduced data set includes 10225 unique movies, rated by 69750 unique users. That is, very few
users or movies are missed by restricting the dataset.

The dataset variables are:
1See source code.
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Name Format Description
‘userId‘ Numerical Unique numerical identifier for anonymity

purposes
‘movieId‘ Numerical Unique numerical identifier
‘rating‘ Numerical Possible ratings are 0, 0.5, 1, ..., 4.5 and 5.0. No

movie is rated 0.
‘timestamp‘ Numerical Unix epoch of the date/time of the rating (i.e.

number of seconds since 1-Jan-1970.
‘title‘ Character string String of characters of the movie title _AND_,

in brackets, of the year the movie came out.

‘genres‘ Character string String of characters listing the genres to which
the movie belongs. There are 20 possible
categories. Each movie can belong to several
categories (e.g. Action and Comedy). If there
are several categories, there are listed separated
by a vertical bar.

2.2 Description of the variables.

2.2.1 Intuitive description of the pre-processing requirements

The dataset needs to be preprocessed to add more practical information. Some steps are necessary
to make available information usable: this is the case for splitting the genres and extracting the year
a movie came out. Other changes are driven by the following considerations.

All users are resource-constrained. Watching a movie requires time and money, both of which are in
limited supply. The act of taking the time to watch a movie, by itself, is an act of choice. The choice
of which movie to watch results from a selection process that already biases a spectator towards
movies he/she feels likely to enjoy. In other words, at least on an intuitive level, the pairs user/movie
are not random: users did not select a movie randomly before rating it.

It is common knowledge that:

• A movie screened for the first time will sometimes be heavily marketed: the decision to watch
this movie might be driven by hype rather than a reasoned choice; the choice to watch it is
not a rational choice and will lead to possible disappointments.

• In the medium term after first screening, movie availability could be relevant. Nowadays,
internet gives access to a huge library of recent and not so recent movies. This was definitely
not the case in the years at which ratings started to be collected (mid-nineties).

• The decision to watch a movie that came out decades ago is a very deliberate process of choice.
There is a survival effect in the sense that time sieved out bad movies. We could expect old
movies, e.g. Citizen Kane, to be rated higher on average than recent ones.

• In the short term, just a few weeks would make a difference on how a movie is perceived. But
whether a movie is 50- or 55-year old would be of little impact. In other words, some sort of
rescaling of time, logarithmic or other, need considering.
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• If a movie is very good, more people will watch it and rate it. In other words, we should see
some correlation between ratings and numbers of ratings. Again, some sort of rescaling of
time, logarithmic or other, need considering.

Whether this additional information is actually useful will be analysed later in this report.

2.2.1.1 Changes related to the movies:

• Split the genres tags into separate logical variable, i.e. 1 variable per individual genre. Each
individual tags is a -1 or 1 numerical value, with 1 indicating that a movie belongs to that
genre. The reasons for using numerical values are:

– On a more intuitive level, movie are not all-or-nothing of a particular genre: a movie
is not funny or not-funny; it could be a little bit funny or extremely funny. We could
imagine a dataset where that movie would be a 20% or a 95% Comedy, or -50% anti-funny
movie, possibly by extracting information from movies reviews.

– We could also encode with 0,1 instead of -1,1. Modeling has shown to be more effective
with the -1,1 encoding.

– Key algorithms for recommender system involve dimension reduction which requires all
variable to be numerical (no factors).

• Dimension reduction require variable scaling: for a given movie, all the ratings received by
that movie are centered and scaled into a z-score. If a movie only received a single rating, the
standard deviation is assumed to be 1 to avoid any missing value.

• The date a movie came out is extracted from the title of the movie. The date is always a year,
which we convert into January, 1st of that year (to avoid any rating being dated before).

2.2.1.2 Changes related to the users:

• As for the movies, for a given user, ratings given by a particular user are centered and scaled
using the mean and standard deviation of all the ratings given by that particular user.

2.2.1.3 Changes related to the dates:

• Timestamps cannot be readily understood. All dates (including the date a movie came out) are
converted to number of properLubridate‘ date objects. Difference between dates are expressed
in days.

• As we will see, ratings for older movies tend to be higher. Time lapsed until a movie is rated
seems of interest (later analysis will show to which extent). The dataset is completed by there
time lapses: looking at the date of a particular rating, how many days have passed since:

– the movie came out;
– the movie received its first rating;
– the user gave its first rating.

• All dates are also in [logarithmic / square root scale].

2.2.2 Summary of the steps

Once the pre-processing is carried out, the dataset variables are:
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1 ## [1] "userId" "movieId" "rating"
2 ## [4] "title" "date_rating" "rating_z"
3 ## [7] "movie_nRating" "movie_nRating_log" "movie_mean_rating"
4 ## [10] "movie_sd_rating" "movie_first_rating" "movie_z"
5 ## [13] "movie_year_out" "movie_date_out" "Action"
6 ## [16] "Adventure" "Animation" "Children"
7 ## [19] "Comedy" "Crime" "Documentary"
8 ## [22] "Drama" "Fantasy" "FilmNoir"
9 ## [25] "Horror" "Musical" "Mystery"

10 ## [28] "Romance" "SciFi" "Thriller"
11 ## [31] "War" "Western" "user_nRating"
12 ## [34] "user_nRating_log" "user_mean_rating" "user_sd_rating"
13 ## [37] "user_first_rating" "user_z" "time_since_out"
14 ## [40] "time_since_out_log" "time_movie_first" "time_movie_first_log"
15 ## [43] "time_user_first" "time_user_first_log"
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Chapter 3

Visualisation

This review is focused on the training set, and excludes the validation data. We are working on the
same extract of the full dataset as in the previous section.

The purpose of the review is to give a high level sense of what the presented data is and some
indicative research avenues for modelling.

We first review individual variables. Then we reviews variables by pairs.

We have described the Data Preparation section the list of variables that were originally provided,
as well as reformatted information.

3.1 Summary analysis of individual variables

3.1.1 Users

All users are identified by a single numerical ID to ensure anonymity.1

There are 69750 unique users in the training dataset. Most of them have rated few movies.

The following plot shows a log-log plot of number of ratings per user. Recall that the Movie Lens
dataset only includes users with 20 or more ratings.2 However, since we are plotting a reduced
dataset (20%), we can see users with less than 20 ratings.

However, plotting the cumulative sum the number of ratings (as a a number between 0% and 100%)
reveals that most of the ratings are provided by a minority of users.

We note the movielens data only includes users who have provided at least 20 ratings.

3.1.2 Ratings

3.1.2.1 Ratings are not continuous

All ratings are between 0 and 5, say, stars (higher meaning better), using only a whole or half
number. A user cannot rate a movie 2.8 or 3.14159. The following code shows that all available
ratings apart from 0 have been used.

1Note that in the case of the Netflix challenges, researchers succeeded in de-anonymising part of the dataset by
cross-referencing with IMDB information. See (Narayanan and Shmatikov 2006).

2See the README.html file provided by GroupLens in the zip file.
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Figure 3.1: Number of ratings per users (log scale)

Figure 3.2: Cumulative proportion of ratings starting with most active users.
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Figure 3.3: Histograms of ratings z-scores

rating n
0.5 16942
1.0 69045
1.5 21447
2.0 142056
2.5 66953
3.0 424188
3.5 158307
4.0 517704
4.5 105809
5.0 277561

We also note that users prefer to use whole numbers instead of half numbers:

whole_or_half n
0.0 1430554
0.5 369458

3.1.2.2 Whole ratings and z-scores

Plotting histograms of the ratings are fairly symmetrical with a marked left-skewness (3rd moment
of the distribution).

3.2 Intuitive statements
We previously made a number of statements driven by intuition. Let us verify those.
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Figure 3.4: Average rating per genre

3.2.1 Statement 1

A movie screened for the first time will sometimes be heavily marketed: the decision to
watch this movie might be driven by hype rather than a reasoned choice.

A plot of ratings during the first 100 days after they come out seems to corroborate the statement:
at the far left of the first plot, there is a wide range of ratings (see the width of the smoothing
uncertainty band). As time passes by, ratings drops then stabilise.

The effect is independent from movie genre (when ignoring all movies that do not have ratings in
the early days).

3.2.2 Statement 2

In the medium term after first screening, movie availability could be relevant. Nowadays,
the Internet gives access to a huge library of recent and not so recent movies. This was
definitely not the case in the years at which ratings started to be collected (mid-nineties).

For the purpose of determining whether this statement holds in some way, we need to consider:

• What happened to the number of ratings over time since a movie came out: more people would
see the movie when in movie theaters, whereas later the movies would have been harder to
access.

• Whether these changes in rating numbers vary if a movie is released in the eighties, nineties,
and so on.

The following plot should be read as follows:
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Figure 3.5: Ratings for the first 100 days

Figure 3.6: Ratings for the first 100 days by genre
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Figure 3.7: Number of ratings depending on time lapsed since premier and year of premiering

• choose year on the y-axis, and follow in a straight line from left to right;
• the colour shows the number of ratings: the darker, the more numerous;
• the first ratings only in 1988, therefore there is a longer and longer delay before the colours

appear when going for later dates to older dates.

We can distinguish 4 different zones depending on the first screening date:

• Very early years before 1992: very few ratings (very pale colour) possibly since fewer people
decide to watch older movies.

• Early years 1993-1996: Strong effect where many ratings are made when the movie is first
screen, then very quiet period.

• Medium years 1996-1998: Very pale in early weeks getting abit darker from 1999 (going down
in a diagonal from top-left to bottom right follows a constant year). We can give any intuitive
for this, apart from democratisation of the Internet. This is pure conjecture.

• Recent years 2000 to now: More or less constant colour.

3.2.3 Statement 3

The decision to watch a movie that came out decades ago is a very deliberate process of
choice. There is a survival effect in the sense that time sieved out bad movies. We could
expect old movies, e.g. Citizen Kane, to be rated higher on average than recent ones.

There is clearly an effect where the average rating goes down. More striking is that recent movies
are more likely to receive a bad rating, where the variance of ratings for movies before the early
seventies is much lower.
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Figure 3.8: Average rating depending on the premiering year

This being said, the impact on average movie ratings is fairly small: it goes from just under 4 to
mid-3.

The statement broadly holds on a genre by genre basis. However, this is clearly not the case for (1)
Animation/Children movies (whose quality has dramatically improved and CGI animation clearly
caters to a wider audience) and (2) Westerns who have become rarer in recent times and possibly
require very strong story/cast to be produced (hence higher average ratings).
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3.2.4 Statement 4

In the short term, just a few weeks would make a difference on how a movie is perceived.
But whether a movie is 50- or 55-year old would be of little impact. In other words, some
sort of rescaling of time, logarithmic or other, need considering.

More generally, ratings are more variable in early weeks than later weeks. See Statement 1 plot.

3.2.5 Statement 5

If a movie is very good, many people will watch it and rate it. In other words, we
should see some correlation between ratings and numbers of ratings. Again, some sort of
rescaling of time, logarithmic or other, need considering.

The effect of good movies attracting many spectators is noticeable. It is also very clear that movies
with few spectators generate extremely variable results.
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This effect remains on a genre by genre basis.

3.2.6 Correlations

We plotted variable-to-variable correlations. Nothing striking appears: strongly correlated variables
are where they chould be (e.g. a variable and its z-score). All interesting correlations are in line
with the intuitive statements proposed above.
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On a reduced set of variables, the plot becomes:
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Chapter 4

Model

From the previous sections, the following variables list_features have been shown to be possibly
relevant:

1 ## [1] "rating" "movie_nRating_log" "movie_z"
2 ## [4] "movie_mean_rating" "movie_sd_rating" "user_nRating_log"
3 ## [7] "user_z" "user_mean_rating" "user_sd_rating"
4 ## [10] "movie_year_out" "time_since_out" "time_movie_first_log"
5 ## [13] "time_user_first_log" "Action" "Adventure"
6 ## [16] "Animation" "Children" "Comedy"
7 ## [19] "Crime" "Documentary" "Drama"
8 ## [22] "Fantasy" "FilmNoir" "Horror"
9 ## [25] "Musical" "Mystery" "Romance"

10 ## [28] "SciFi" "Thriller" "War"
11 ## [31] "Western"

In this section, we used the reduced and full dataset. However, on all full dataset training attempts,
RStudio crashed running out of memory (exceeding 32 GB).

1 # Datasets used for training.
2 # edx_training is either an extract or the full dataset. See source code.
3

4 x <- edx_training %>% select(one_of(list_features)) %>% as.matrix() # 2.1 GB on full set
5 y <- edx_training %>% select(rating) %>% as.matrix() #

The following helper functions:

• Make a prediction given a fitted model and return the validation dataset with squared error of
each prediction.

• Appends the validation RMSE to a table that will include the 3 models RMSEs.
1 # Squared error of predictions in descending order
2 square_fit <- function(fit_model){
3

4 predictions <- fit_model %>% predict(edx_test)
5
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6 return (edx_test %>%
7 cbind(predictions) %>%
8 mutate(square_error = (predictions - rating)^2) %>%
9 arrange(desc(square_error))

10 )
11 }
12

13

14 RMSEs <- tibble(Model = "Target", RMSE = 0.8649)
15

16 add_rmse <- function(name, fit) {
17 rm <- sqrt(sum(fit$square_error) / nrow(fit))
18 rw <- tibble(Model = name, RMSE = rm)
19 RMSEs %>% rbind(rw)
20 }

4.1 Linear regression
The following runs a linear regression on the training data using the predicting variables listed above.

1 set.seed(42, sample.kind = "Rounding")
2 start_time <- Sys.time()
3

4 fit_lm <- train(rating ~ .,
5 data = x,
6 method = "lm")
7

8 # Make predictions
9 square_lm <- square_fit(fit_lm)

10 RMSEs <- add_rmse("lm", square_lm)
11 worst_lm <- square_lm %>% filter(square_error >= 1.5^2)
12

13

14 end_time <- Sys.time()
15 print(end_time - start_time)
16

17 # Results
18 # reduced dataset = 0.8946755
19 # full dataset = CRASH

4.2 Generalised Linear regression
The following runs a generalised linear regression on the training data using the predicting variables
listed above.

1 set.seed(42, sample.kind = "Rounding")
2 start_time <- Sys.time()
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3

4 fit_glm <- train(rating ~ .,
5 data = x,
6 method = "glm")
7

8 # Make predictions
9 square_glm <- square_fit(fit_glm)

10 RMSEs <- add_rmse("glm", square_glm)
11 worst_glm <- square_glm %>% filter(square_error >= 1.5^2)
12

13

14 end_time <- Sys.time()
15 print(end_time - start_time)
16

17

18 # Results
19 # reduced dataset = 0.9486
20 # full dataset = CRASH

4.3 LASSO regression
The following runs a regularised linear regression on the training data using the predicting variables
listed above.

LASSO stands for Least Absolute Shrinkage and Selection Operator. The regularisation operates in
two ways:

• The absolute values of the coeeficients is minimised.

• Values below a certain threshold are nil-led, effectively removing predictors.
1 # save(fit_lasso, square_lasso, worst_glm, file = "datasets/model_lasso.rda")
2 # load("datasets/model_lasso.rda")
3

4 set.seed(42, sample.kind = "Rounding")
5

6 lambda <- 10^seq(-3, 3, length = 10)
7

8 fit_lasso <- train(
9 rating ~.,

10 data = x,
11 method = "glmnet",
12 trControl = trainControl("cv", number = 10),
13 tuneGrid = expand.grid(alpha = 1, lambda = lambda)
14 )
15

16 # Model coefficients
17 coef(fit_lasso$finalModel, fit_lasso$bestTune$lambda)
18

21



19 # Make predictions
20 square_lasso <- square_fit(fit_lasso)
21 RMSEs <- add_rmse("lasso", square_lasso)
22 worst_lasso <- square_lasso %>% filter(square_error >= 1.5^2)
23

24 end_time <- Sys.time()
25 print(end_time - start_time)
26

27

28 # Results
29 # reduced dataset = 0.94837
30 # full dataset = CRASH

4.4 Conclusion
Those models, although initially promising, do fail to meet our expectations:

• They reach an RMSE which is good but not below the threshold of 0.8649. The linear regression
model performed best with an RMSE = 0.8946.

• More importantly, the training and validation on a very small sample of the datasets (20%).
The computational resources required to do anything with more data or more sophisticated
models has been out of reach (RStudio has crashed numerous times in the process).
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Chapter 5

Stochastic Gradient Descent

The previous models were based on the expectation that our intuitions, confirmed by visual inspection
of the dataset, would lead to better performing models. This section shows this is incorrect. We
here present a more “brute-force” model: a low-rank matrix factorisation with is approximated by a
stochastic gradient descent.

This model proves to be very efficient:

• Before any training, the validation set RMSE is 0.88516 thanks to a non-naive (i.e. not random)
initialisation;

• After very little training, using the initial 3 features (explained below), the RMSE became
0.8304 which improves on the targetted RMSE.

• A few hours of training brings the RMSE down to 0.7996 with 11 features.1 Visually, the
RMSE improvements suggest that additional features may help.

5.1 Latent factor model
The approach we follow ia a Latent Factor Model. This section partly draws on part 9 of the
Stanford Machine Learning course taught by Andrew Ng (which we previously completed), and a
blog post by Sonya Sawtelle.2

In essence, this is a dimension reduction model. But two differences reduce the computational
workload:

• Users and movies are coalesced into groups of similar users and similar movies. This is purely
based on the triplets user / movie / rescaled rating. Information about dates, genres is ignored.

• The model is trained by Stochastic Gradient Descent (SGD). Gradient descent methods are a
class of optimisation algorithms that minimise a cost function following downward gradients.
SGD is a stochastic version of it where random subsets of the training set are used to converge
on very large datasets.

1This is a white lie since many more hours went into exploring the various parameters.
2See https://sdsawtelle.github.io/blog/output/week9-recommender-andrew-ng-machine-learning-with-python.html
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5.2 Formal description

5.2.1 Low-rank factorisation

5.2.1.1 Singular Value Decomposition

As noted in the course material (section 34.1.1), singular value decomposition (SVD) is widely used
in machine learning. Wikipedia provides a general description which includes a geometric intuition.3

However, this approach is not feasible: the dimensions are too large, the dataset is extremely sparse.

5.2.1.2 Low-rank matrix factorisation (LRMF)

At a high level, the purpose of this assignment is to estimate a matrix R of Nusers rows by Nmovies

columns, where each value contains the rating given by a user to a movie. This is to be estimated
from a sample of values from the training set.

The intuitive and geometric intuition of LRMF is as follows:

• Work in a low dimensional space (k dimensions).

• In that space, give each user u and movie m coordinates in that space (u = (u1, ..., uk) and
m = (m1, ...,mk)).

• Note that the cross-product of two points in that space will be zero or close to zero if the
points are in perpendicular directions. Conversely, points in a close zone in that space will
have a cross-product away from zero. In that sense, movies and users can be grouped together
in that space: similar movies would be in the same zone of space, different movies would be
in perpendicular positions. Because movies ans users both have coordinates in that space,
then can all be mixed and grouped: one can measure the similarities between movies, user or
between movie and user. The dimensions are commonly called features.

In practice, LRMF is represented by two matrices each with k columns: P of Nusers rows, and
Q of Nusers rows. The k columns give the k coordinates of each user and movie in the feature
space. Choosing a user and a movie, the cross-product of the corresponding rows in P and Q gives
u×m =

∑k
i=1 uimi and should produce a rating.

The purpose of the algorithm is then to estimate P and Q so that the cross-products match that of
the training sets. That is, n matrix notation, R is estimated by PQ>.

3https://en.wikipedia.org/wiki/Singular_value_decomposition
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4

It is important to note that the only information used is the rating. Knowledge about the genres of
the movies, timestamp of a rating, year a movie premiered is ignored.

5.2.2 Gradient Descent

SVD is not useful in our context because (1) the size of the matrices involved is too large, and (2)
more importantly requires a fully populated matrix (filling out missing values is a difficult issue).

Instead, we will iteratively estimate the P and Q matrices’ coefficients by gradient descent. The cost
function used represents prediction error with an additional regularisation cost over those coefficients.

5.2.2.1 Cost function

Let’s use the following terms:

• Ω is the set of all (user,movie) pairs in the training set;
• For each (u,m) in Ω, ru,m is the rating in the training set.
• P is written as pi,k, Q is written as qj,k with i ∈ [1, ..., Nusers], j ∈ [1, ..., Nmovies] and
k ∈ [1, ..., Nfeatures].

• λ is the regularisation parameter.

Our regularised cost function is written:

JP,Q =
∑

(i,j)∈Ω

ri,j −
Nfeatures∑

k=1
pi,kqj,k

2

+ λ

2

∑
i,k

p2
i,k +

∑
j,k

q2
j,k


The gradient descent algorithm seeks to minimise the JP,Q cost function by step-wise update of each
model parameter x as follows:

xt+1 ← xt − α
∂JP,Q

∂x

The parameters are the matrix coefficients pi,k qj,k. α is the learning parameter that needs to be
adjusted.

4source: https://towardsdatascience.com/large-scale-jobs-recommendation-engine-using-implicit-data-in-pyspark-ccf8df5d910e

25

https://towardsdatascience.com/large-scale-jobs-recommendation-engine-using-implicit-data-in-pyspark-ccf8df5d910e


5.2.2.2 Cost function partial derivatives

The partial derivatives of the cost function is:

∂JP,Q

∂x
= ∂

∂x

 ∑
(i,j)∈Ω

ri,j −
Nfeatures∑

k=1
pi,kqj,k

2

+ λ

2

∑
i,k

p2
i,k +

∑
j,k

q2
j,k




∂JP,Q

∂x
=

∑
(i,j)∈Ω

2∂ri,j −
∑Nfeatures

k=1 pi,kqj,k

∂x

ri,j −
Nfeatures∑

k=1
pi,kqj,k

+λ

2

∑
i,k

2∂pi,k

∂x
pi,k +

∑
j,k

2∂pi,k

∂x
qj,k


We note that ri,j are constants

∂JP,Q

∂x
= 2

∑
(i,j)∈Ω

Nfeatures∑
k=1

∂ − pi,kqj,k

∂x

ri,j −
Nfeatures∑

k=1
pi,kqj,k

+λ

∑
i,k

∂pi,k

∂x
pi,k +

∑
j,k

∂pi,k

∂x
qj,k


If x is a coefficient of P (resp. Q), say pa,b (resp. qa,b), all partial derivatives will be nil unless for
(i, j) = (a, b).

Therefore:

∂JP,Q

∂pa,b
= −2

∑
(i,j)∈Ω

qj,b

ri,j −
Nfeatures∑

k=1
pi,kqj,k

 + λpa,b

and,

∂JP,Q

∂qa,b
= −2

∑
(i,j)∈Ω

pi,b

ri,j −
Nfeatures∑

k=1
pi,kqj,k

 + λqa,b

Since εi, j = ri,j −
∑Nfeatures

k=1 pi,kqj,k is the rating prediction error, this becomes:

∂JP,Q

∂pa,b
= −2

∑
(i,j)∈Ω

qj,bεi,j + λpa,b

and,

∂JP,Q

∂qa,b
= −2

∑
(i,j)∈Ω

pi,bεi,j + λqa,b
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5.2.3 Stochastic Gradient Descent (SGD)

The size of the datasets is prohibitive to do those calculations across the entire training set.

Instead, we will repeatedly update the model parameters on small random samples of the training
set.

Chapter 14 of (Shalev-Shwartz and Ben-David 2014) gives an extensive introduction to various SGD
algorithms.

We implemented a simple version of the algorithm and present the code in more detail.

5.3 SGD Code walk
The algorithm is implemented from scratch and relies on nothing but the Tidyverse libraries.

1 library(tidyverse)

The quality of the training and predictions is measured by the root mean squared error (RMSE), for
which we define a few helper functions (the global variables are defined later):

1 rmse_training <- function(){
2 prediction_Z <- rowSums(Matrices$P[tri_train$userN,] *
3 Matrices$Q[tri_train$movieN,])
4 prediction <- prediction_Z * r_sd + r_m
5 sqrt( sum((tri_train$rating - prediction)^2 / nSamples) )
6 }
7

8 rmse_validation <- function(){
9 prediction_Z <- rowSums(Matrices$P[tri_test$userN,] *

10 Matrices$Q[tri_test$movieN,])
11 prediction <- prediction_Z * r_sd + r_m
12 sqrt( sum((tri_test$rating - prediction)^2) / nTest )
13 }
14

15 sum_square <- function(v){
16 return (sqrt(sum(v^2) / nrow(v)))
17 }

The key function updates the model coefficients. Its inputs are:

• a list that contains the P an Q matrices, the training RMSE of those matrices, and a logical
value indicating whether this RMSE is worse than what it was before the update (i.e. did the
update diverge).

• a batch_size that defines the number of samples to be drawn from the training set. A normal
gradient descent would use the full training set; by default we only use 10,000 samples out of
10 million (one tenth of a percent).

• The cost regularisation lambda and gradient descent learning parameter alpha.

• A number of times to run the descent before recalculating the RMSE and exiting the function
(calculating the RMSE is computationally expensive).

27



The training set used is less rich than the original set. As discussed, it only uses the rating (more
exactly on the z_score of the rating). Genres, timestamps,. . . are discarded.

1 # Iterate gradient descent
2 stochastic_grad_descent <- function(model, times = 1,
3 batch_size = 10000, lambda = 0.1, alpha = 0.01,
4 verbose = TRUE) {
5

6 # Run the descent `times` times.
7 for(i in 1:times) {
8

9 # Extract a sample of size `batch_size` from the training set.
10 spl <- sample(1:nSamples, size = batch_size, replace = FALSE)
11 spl_training_values <- tri_train[spl,]
12

13 # Take a subset of `P` and `Q` matching the users and
14 # movies in the training sample.
15 spl_P <- model$P[spl_training_values$userN,]
16 spl_Q <- model$Q[spl_training_values$movieN,]
17

18 # rowSums returns the cross-product for a given user and movie.
19 # err is the term inside brackets in the partial derivatives
20 # calculation above.
21 err <- spl_training_values$rating_z - rowSums(spl_P * spl_Q)
22

23 # Partial derivatives wrt p and q
24 delta_P <- -err * spl_Q + lambda * spl_P
25 delta_Q <- -err * spl_P + lambda * spl_Q
26

27 model$P[spl_training_values$userN,] <- spl_P - alpha * delta_P
28 model$Q[spl_training_values$movieN,] <- spl_Q - alpha * delta_Q
29

30 }
31

32 # RMSE against the training set
33 error <- sqrt(sum(
34 (tri_train$rating_z - rowSums(model$P[tri_train$userN,] *
35 model$Q[tri_train$movieN,]))^2)
36 / nSamples )
37

38 # Compares to RMSE before update
39 model$WORSE_RMSE <- (model$RMSE < error)
40 model$RMSE <- error
41

42 # Print some information to keep track of success
43 if (verbose) {
44 cat(" # features=", ncol(model$P),
45 " J=", nSamples * error ^2 +
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46 lambda/2 * (sum(model$P^2) + sum(model$Q^2)),
47 " Z-scores RMSE=", model$RMSE,
48 "\n")
49 flush.console()
50 }
51

52 return(model)
53 }

Now that the functions are defined, we prepare the data sets.

• First load the original data if not already available.
1 # Load the datasets which were saved on disk after using the course source code.
2 if(!exists("edx")) edx <- readRDS("datasets/edx.rds")
3 if(!exists("validation")) validation <- readRDS("datasets/validation.rds")

• Calculate the z-score of all ratings.
1 # Creates a movie index from 1 to nMovies
2 r_m <- mean(edx$rating)
3 r_sd <- sd(edx$rating)
4

5 training_set <- edx %>%
6 select(userId, movieId, rating) %>%
7 mutate(rating_z = (rating - r_m) / r_sd)
8

9 test_set <- validation %>%
10 select(userId, movieId, rating) %>%
11 mutate(rating_z = (rating - r_m) / r_sd)

• We do not know if there are any gaps in the userId’s and movieId’s in the datasets. They
cannot be used as the row numbers of the P and Q matrices. Therefore we count how many
distinct users and movies there are and create an index to link a movieId (resp. userId) to its
Q (resp. P ) -matrix row number.

1 movieIndex <-
2 training_set %>%
3 distinct(movieId) %>%
4 arrange(movieId) %>%
5 mutate(movieN = row_number())
6

7 userIndex <-
8 training_set %>%
9 distinct(userId) %>%

10 arrange(userId) %>%
11 mutate(userN = row_number())

• For each movie and user, we calculate its mean rating z-score.
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1 movieMean <-
2 training_set %>%
3 group_by(movieId) %>%
4 summarise(m = mean(rating_z))
5

6 userMean <-
7 training_set %>%
8 group_by(userId) %>%
9 summarise(m = mean(rating_z))

• We can now create the training and validation sets contining the movie index (instead of the
movieId), user index and ratings (original and z-score).

1 # Training triplets with z_score
2 tri_train <- training_set %>%
3 left_join(userIndex, by = "userId") %>%
4 left_join(movieIndex, by = "movieId") %>%
5 select(-userId, -movieId)
6

7 tri_test <- test_set %>%
8 select(userId, movieId, rating) %>%
9 left_join(userIndex, by = "userId") %>%

10 left_join(movieIndex, by = "movieId") %>%
11 select(-userId, -movieId) %>%
12 mutate(rating_z = (rating - r_m)/r_sd,
13 error = 0)

1 nSamples <- nrow(tri_train)
2 nTest <- nrow(tri_test)
3

4 nUsers <- tri_train %>% select(userN) %>% n_distinct()
5 nMovies <- tri_train %>% select(movieN) %>% n_distinct()

• The P and Q matrices are defined with 3 latent factors to start with.
1 # number of initial latent factors
2 nLF <- 3
3

4 LF_Model <- list( P = matrix(0, nrow = nUsers, ncol = nLF),
5 Q = matrix(0, nrow = nMovies, ncol = nLF),
6 RMSE = 1000.0,
7 WORSE_RMSE = FALSE)

• To speed up the training, the matrices are initialised so that the cross product is the sum of
the movie average z-rating (mmovieN ) and user z-rating (uuserN ).
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P ×Q> =



1 u1 0
1 u2 0
...

...
...

1 ui 0
...

...
...

1 unUser 0


×

m1 m2 · · · mj · · · mnMovies

1 1 · · · 1 · · · 1
0 0 · · · 0 · · · 0

 =


...

· · · ui +mj · · ·
...



1 # Features matrices are initialised with:
2 # Users: 1st column is 1, 2nd is the mean rating (centered), rest is noise
3 # Movies: 1st column is the mean rating (centered), 2nd is 1, rest is noise
4 #
5 # That way, the matrix multiplication will start by giving reasonable value
6

7 LF_Model$P[,1] <- matrix(1, nrow = nUsers, ncol = 1)
8 LF_Model$P[,2] <- as.matrix(userIndex %>%
9 left_join(userMean, by ="userId") %>% select(m))

10

11 LF_Model$Q[,1] <- as.matrix(movieIndex %>%
12 left_join(movieMean, by ="movieId") %>% select(m))
13 LF_Model$Q[,2] <- matrix(1, nrow = nMovies, ncol = 1)

• Random noise is added to all model parameters, otherwise the gradient descent has nowhere
to start (zeros wipe everything in the matrix multiplications).

1 # Add random noise
2 set.seed(42, sample.kind = "Rounding")
3 LF_Model$P <- LF_Model$P + matrix(rnorm(nUsers * nLF,
4 mean = 0,
5 sd = 0.01),
6 nrow = nUsers,
7 ncol = nLF)
8

9 LF_Model$Q <- LF_Model$Q + matrix(rnorm(nMovies * nLF,
10 mean = 0,
11 sd = 0.01),
12 nrow = nMovies,
13 ncol = nLF)

• We also have a list that keeps track of all the training steps and values.
1 rm(list_results)
2 list_results <- tibble("alpha" = numeric(),
3 "lambda" = numeric(),
4 "nFeatures" = numeric(),
5 "rmse_training_z_score" = numeric(),
6 "rmse_training" = numeric(),
7 "rmse_validation" = numeric())

The main training loop runs as follows:
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• We start with 3 features.

• The model is updated in batches of 100 updates. This is done up to 250 times. At each time,
if the model starts diverging, the learning parameter (α) is reduced.

• Once the 250 times have passed, or if α has become incredibly small, or if the RMSE doesn’t
really improve anymoe (by less than 1 millionth), we add another features and start again.

1 initial_alpha <- 0.1
2 for(n in 1:100){
3

4 # Current number of features
5 number_features <- ncol(LF_Model$P)
6

7 # lambda = 0.01 for 25 features, i.e. for about 2,000,000 parameters.
8 # We keep lambda proportional to the number of features
9 lambda <- 0.1 * (nUsers + nMovies) * number_features / 2000000

10

11 alpha <- initial_alpha
12

13 cat("CURRENT FEATURES: ", number_features,
14 "---- Pre-training validation RMSE = ", rmse_validation(), "\n")
15

16 list_results <- list_results %>% add_row(alpha = alpha,
17 lambda = lambda,
18 nFeatures = number_features,
19 rmse_training_z_score = LF_Model$RMSE,
20 rmse_training = rmse_training(),
21 rmse_validation = rmse_validation())
22

23 for (i in 1:250){
24 pre_RMSE <- LF_Model$RMSE
25 LF_Model <- stochastic_grad_descent(model = LF_Model,
26 times = 100,
27 batch_size = 1000 * number_features,
28 alpha = alpha,
29 lambda = lambda)
30

31 list_results <- list_results %>% add_row(alpha = alpha,
32 lambda = lambda,
33 nFeatures = number_features,
34 rmse_training_z_score = LF_Model$RMSE,
35 rmse_training = rmse_training(),
36 rmse_validation = rmse_validation())
37

38 if (LF_Model$WORSE_RMSE) {
39 alpha <- alpha / 2
40 cat("Decreasing gradient parameter to: ", alpha, "\n")
41 }
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42

43 if (initial_alpha / alpha > 1000 |
44 abs( (LF_Model$RMSE - pre_RMSE) / pre_RMSE) < 1e-6) {
45 break()
46 }
47 }
48

49

50 # RMSE against validation set:
51 rmse_validation_post <- rmse_validation()
52 cat("CURRENT FEATURES: ", number_features,
53 "---- POST-training validation RMSE = ", rmse_validation_post, "\n")
54

55 # if (number_features == 12){
56 # break()
57 # }
58

59

60 # Add k features
61 k_features <- 1
62 LF_Model$P <- cbind(LF_Model$P,
63 matrix(rnorm(nrow(LF_Model$P) * k_features,
64 mean = 0,
65 sd = sd(LF_Model$P)/100),
66 nrow = nrow(LF_Model$P),
67 ncol = k_features))
68

69 LF_Model$Q <- cbind(LF_Model$Q,
70 matrix(rnorm(nrow(LF_Model$Q) * k_features,
71 mean = 0,
72 sd = sd(LF_Model$Q)/100),
73 nrow = nrow(LF_Model$Q),
74 ncol = k_features))
75

76 }

The following table shows the RMSE on the validation set that is obtained for a given number of
features.
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Figure 5.1: Plot of the RmSE on the validation test

nFeatures best_RMSE
3 0.830465
4 0.829026
5 0.817902
6 0.810112
7 0.804342
8 0.804338
9 0.802270

10 0.802270
11 0.799617

This plot shows the progress of the RMSE on the validation set. It shows an overall improvement
with the number of features, with little worsening spikes each time a feature seeded with random
values is added.

We also developed a re-implementation in Julia (availabe on Gihub) that we used to cross-check the
R implementation. It gave similar results (in much less time):
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Chapter 6

Conclusion

The project developed a recommender system for a movies’ set of ratings. After exploring the
dataset and visually confirming a number of intuitions about movie ratings, we ran three models: a
linear regression, a generalised linear model and a Lasso model (regularised linear model). All three
performed poorly against the project target.

We then estimated ratings with a low-rank matrix factorisation estimated through a stochastic
gradient descent. This proved very efficient and yielded a RMSE of 0.7996 against the validation
dataset.

Two further work avenues are suggested:

• Convergence speed could potentially be improved by noting that the cost function is λ-strongly
convex, and the SGD algorithm can be improved. See section 14.5.3 of (Shalev-Shwartz and
Ben-David 2014).

• The three models proposed can also be formulated as minimisation of a cost function that can
then be minimised using stochastic gradient descent, therefore being able to use the entire
dataset.
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Chapter 7

Appendix

7.1 Session Info

1 ## R version 3.6.1 (2019-07-05)
2 ## Platform: x86_64-pc-linux-gnu (64-bit)
3 ## Running under: Ubuntu Eoan Ermine (development branch)
4 ##
5 ## Matrix products: default
6 ## BLAS: /usr/lib/x86_64-linux-gnu/openblas/libblas.so.3
7 ## LAPACK: /usr/lib/x86_64-linux-gnu/libopenblasp-r0.3.7.so
8 ##
9 ## Random number generation:

10 ## RNG: Mersenne-Twister
11 ## Normal: Inversion
12 ## Sample: Rounding
13 ##
14 ## locale:
15 ## [1] LC_CTYPE=en_AU.UTF-8 LC_NUMERIC=C
16 ## [3] LC_TIME=en_AU.UTF-8 LC_COLLATE=en_AU.UTF-8
17 ## [5] LC_MONETARY=en_AU.UTF-8 LC_MESSAGES=en_AU.UTF-8
18 ## [7] LC_PAPER=en_AU.UTF-8 LC_NAME=C
19 ## [9] LC_ADDRESS=C LC_TELEPHONE=C
20 ## [11] LC_MEASUREMENT=en_AU.UTF-8 LC_IDENTIFICATION=C
21 ##
22 ## attached base packages:
23 ## [1] parallel stats graphics grDevices utils datasets methods
24 ## [8] base
25 ##
26 ## other attached packages:
27 ## [1] corrplot_0.84 RColorBrewer_1.1-2 kableExtra_1.1.0
28 ## [4] Metrics_0.1.4 gridExtra_2.3 doParallel_1.0.15
29 ## [7] iterators_1.0.12 foreach_1.5.1 dslabs_0.7.1
30 ## [10] caret_6.0-84 lattice_0.20-38 lubridate_1.7.4
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31 ## [13] forcats_0.4.0 stringr_1.4.0 dplyr_0.8.3
32 ## [16] purrr_0.3.2 readr_1.3.1 tidyr_1.0.0
33 ## [19] tibble_2.1.3 ggplot2_3.2.1.9000 tidyverse_1.2.1
34 ##
35 ## loaded via a namespace (and not attached):
36 ## [1] httr_1.4.1 jsonlite_1.6 viridisLite_0.3.0
37 ## [4] splines_3.6.1 prodlim_2018.04.18 modelr_0.1.5
38 ## [7] assertthat_0.2.1 highr_0.8 stats4_3.6.1
39 ## [10] cellranger_1.1.0 yaml_2.2.0 ipred_0.9-9
40 ## [13] pillar_1.4.2 backports_1.1.4 glue_1.3.1
41 ## [16] digest_0.6.21 rvest_0.3.4 colorspace_1.4-1
42 ## [19] recipes_0.1.7 htmltools_0.3.6 Matrix_1.2-18
43 ## [22] plyr_1.8.4 timeDate_3043.103 pkgconfig_2.0.3
44 ## [25] broom_0.5.2 haven_2.1.1 scales_1.0.0
45 ## [28] webshot_0.5.1 gower_0.2.1 lava_1.6.6
46 ## [31] generics_0.0.2 withr_2.1.2 nnet_7.3-12
47 ## [34] cli_1.1.0 survival_2.44-1.1 magrittr_1.5
48 ## [37] crayon_1.3.4 readxl_1.3.1 evaluate_0.14
49 ## [40] nlme_3.1-141 MASS_7.3-51.4 xml2_1.2.2
50 ## [43] class_7.3-15 tools_3.6.1 data.table_1.12.2
51 ## [46] hms_0.5.1 lifecycle_0.1.0 munsell_0.5.0
52 ## [49] compiler_3.6.1 rlang_0.4.0 grid_3.6.1
53 ## [52] rstudioapi_0.10 labeling_0.3 rmarkdown_1.15
54 ## [55] gtable_0.3.0 ModelMetrics_1.2.2 codetools_0.2-16
55 ## [58] reshape2_1.4.3 R6_2.4.0 knitr_1.25
56 ## [61] zeallot_0.1.0 stringi_1.4.3 Rcpp_1.0.2
57 ## [64] vctrs_0.2.0 rpart_4.1-15 tidyselect_0.2.5
58 ## [67] xfun_0.9
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